
Tertiary Phosphine Complexes of Bis(diphenylphosphinodithioato)palladium(II). **A** Correction

By (MISS) J. M. C. ALISON and T. A. STEPHENSON*

(Department of Chemistry, University of Edinburgh, Edinburgh EH9 3]])

Summary The 1:1 and 1:2 tertiary phosphine adducts of Pd(S₂PPh₂)₂, originally formulated as five- and six-coordinate complexes, respectively, are probably both four-co-ordinate.

RECENTLY evidence was reported for 1:1 and 1:2 tertiary phosphine adducts of $Pd(S_2PPh_2)_2$ which were tentatively formulated as five- and six-co-ordinate complexes, respectively.1 Further work on these and the isomorphous platinum(11) complexes has now indicated that this formulation is incorrect and that the "six-co-ordinate" complexes are in fact four-co-ordinate ionic species (I) and the "five-co-ordinate" complexes are probably the four-coordinate species (II).

The evidence for the revised structures is as follows: (a) As discussed previously,¹ the 1:2 complexes rapidly dissociate to 1:1 complexes in benzene and carbon disulphide. However, in more polar solvents such as dichloromethane the 1:2 complexes are stabilized and conductivity measurements (Table 1) are consistent with those expected for 1:1 electrolytes in this solvent.

TABLE 1

Equivalent conductivities (25°) of some 1:1 and 1:2 complexes in CH₂Cl₂

Compound		Concn. (10 ⁻⁴ м)	Да	Λ ^a (plus excess of PR ₃)
-		· /		1 103/
Bu ⁿ ₄ NClO ₄		10.1	22.7	
$Pd(S_2PPh_2)_2(PEt_3)_2$		8.3	25	
Pd(S ₂ PPh ₂) ₂ (PMe ₂ Ph) ₂	• •	12	$24 \cdot 4$	
$Pd(S_2PPh_2)_2(PMe_2Ph)$	••	13.7	$2 \cdot 5$	$26 \cdot 4$
$Pt(S_2PPh_2)_2(PPh_3)_2$		8.8	26.6	
$Pt(S_2PPh_2)_2(PPh_3)$.	••	9.4	0.72	$32 \cdot 35$
$Pt(S_2PPh_2)_2(PMePh_2)_2$	• •	8.6	30.2	
$Pt(S_2PPh_2)_2(PMePh_2)$	••	8.1	1.18	29.77

^a cm² ohm⁻¹mole⁻¹.

(b) Addition of an excess of tertiary phosphine to the 1:1 complexes (non-electrolytes) in CH₂Cl₂ produces an increase

¹ T. A. Stephenson and B. D. Faithful, J. Chem. Soc. (A), 1970, 1504.

² J. M. Jenkins and B. L. Shaw, J. Chem. Soc. (A), 1966, 770.

⁸C. A. Beevers and A. Fraser, to be published.

⁴ F. N. Tebbe and E. L. Muetterties, *Inorg. Chem.*, 1970, 9, 629.
⁵ J. P. Fackler, jun., J. A. Fetchin, and W. C. Seidel, J. Amer. Chem. Soc., 1969, 91, 1217 and references therein.

in conductivity consistent with the formation of 1:1 electrolytes (Table 1).

(c) ¹H n.m.r. data on 1:2 platinum(II) complexes of MePh₂P and Me₂PhP in deuteriochloroform (Table 2) indicate a *cis*-arrangement of tertiary phosphine groups (no virtual coupling²).

(d) An X-ray structural analysis³ on [Pd(S₂PPh₂)₂(PEt₃)₂] is sufficiently advanced to verify the authenticity of structure (I). The mull and solution i.r. spectra of these 1:2 complexes are identical, suggesting the same species is retained in solution, and this is supported by ¹H n.m.r. and conductimetric data.

The reformulation of the 1:2 complexes as the ionic species (I) and their ready interconversion with the 1:1 complexes casts doubt on the validity of the five-coordinate structure postulated earlier for the latter.¹ No direct evidence is yet available to support (II) (a crystal structure of [Pd(S₂PPh₂)₂(PPh₃)] is in progress) but an analogous structure has been postulated by Tebbe and Muetterties⁴ for 1:1 tertiary phosphine complexes of palladium(II) difluorodithiophosphate on the basis of i.r. and ¹⁹F n.m.r. evidence.

TABLE 2

¹H n.m.r. data (methyl region) for some platinum tertiary phosphine complexes in CDCl₃

	τ	
Compound	valuea	Multiplicity and J value (Hz) ^b
$[Pt(S_2PPh_2)_2(PMe_2Ph)_2]$	8.27	J = J = J = J
$[Pt(S_2PPh_2)_2(PMePh_2)_2]$	7.99	three doublets $J(Pt-H)$ 49 J(P-H) 13·2 J(Pt-H) 49·5
$[Pt(S_2PPh_2)_2(PMePh_2)]$	7.67	three doublets $J(P-H)$ 11.3
^в ±0.01. ^b <i>J</i> (P−H) =	⊢ 0·2 H	J(Pt-H) 37.5 z; $J(\text{Pt-H}) \pm 0.5$ Hz.

If (II) is correct, the best explanation for the "isomers" of [Pd(S₂PPh₂)₂PPh₃]¹ is probably different orientations of the unidentate diphenylphosphinodithioato-group with respect to the bulky triphenylphosphine ligand.

Finally, preliminary studies on tertiary phosphine complexes of platinum(11) dithiocarbamates⁵ suggest that 1:1 and 1:2 adducts with analogous structures to (I) and (II) are formed.

We thank the Science Research Council for an award (to J.M.C.A.) and Johnson-Matthey Limited for a loan of palladium(II) chloride.

(Received, June 22nd, 1970; Com. 984.)